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Abstract: The synthesis of five sialyl Lewis X mimetics was described. Mimetics 2 - 6 were easily
synthesized from readily available starting materials. Mimics 4 and 6 showed activities five-fold better
than sialyl Lewis X. Copyright © 1996 Elsevier Science Ltd

In continuation of our interest in development of carbohydrate mimics,! we describe herein rationally
designed C-linked mannose derivatives as mimics of sialyl Lewis X (SLe*), a tetrasaccharide ligand of E- and
P-selectin associated with inflammation? and cancer.3

Recent studies indicate that SLeX is active in vivo as an anti-inflammatory agent* due to its inhibitory
activity against E- and P-selectin of endothelial cells, which interact with SLe*-expressing neutrophils and
leukocytes in the rolling adhesion step of inflammatory reactions. Several drawbacks are encountered,
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Figure 1. Sialyl Lewis X (1) and the funtional groups essential for E-(e), P-(o), and L-selectins
(o), and the mimetics 2 - 6.

however, when considering SLe* as a drug candidate: the activity is relatively low (ICsq for E- and P-selectin
is 0.5 mmol and >3 mM respectively)?; the rotational barrier is relatively high (5 kcal/mole) for the free sugar
binding to E-selectin; SLeX is difficult to synthesize on large scales; it is relatively unstable and orally inactive.
Development of SLe* mimics which are easy to synthesize, more stable and more active than SLeX, and
preferably orally active is therefore of current interest.

Figure 1 shows the structure of SLe* and the functional groups essential for interaction with E-, P-, and
L-selectins. The 2-, 3-, and 4-hydroxyl groups of the L-fucose,b the 4-, and 6-hydroxyl groups of the D-
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galactose,’ and the carboxylate residue from the sialic acid® are critical for binding to E-selectin. P-selectin also
requires these groups except that the 2- and 4-hydroxyl groups of the fucose are not critical.8 L-selectin
recognizes all the groups for E-selectin binding and additionally requires a sulfate at the 6-position of the
galactose? or more likely of the N-acetylglucoseamine!0 to enhance binding.

Mimics 2 - 6 utilize a D-mannose residue to mimic the L-fucose residue. This substitution has been used
successfully in the design of SLeX mimics.!e:'8 Mimics 5 and 6 use a 1,2-diol as a galactose mimic and all of

the mimics utilize the carboxyl group from readily available amino acids as the sialic acid surrogate.
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Scheme 1. Synthesis of SLe* mimics 2 - 4.

The C-mannose core is common to all of the mimics and is readily available from commercially available
mannose pentaacetate. Lewis acid catalyzed (BF3°Et,0, TMSOTY) allyltrimethylsilane addition to D-mannose
pentaacetate in acetonitrile afforded the crude C-allyl glycoside which was deacylated directly to yield tetraol 7
in excellent yield (76%) and selectivity (8:1 a:$).1! Perbenzylation followed by ozonolysis of the terminal
olefin and oxidation of the crude aldehyde using Jones’ reagent afforded carboxylic acid 8 in 83% yield for this
three step conversion. EDC coupling of 8 with BnO-Gly-NH2¢TsOH (9), BnO-Tyr-NH2+TsOH (19}, or
BnO-Glu(OBn)-NH2¢TsOH (11) followed by exhaustive hydrogenolysis of the benzyl groups afforded
mimics 2, 3, and 4 in good yield (63%, 60%, 62% respectively from 8).

Mimics 5 and 6 were synthesized from aldehyde 9 (scheme 2), which was an intermediate in the
synthesis of mimics 2 - 4 . Treatment of aldehyde 9 with (EtO);P(O)CHCOzEt following the conditions
outlined by Roush and Masamune!2 introduced the unsaturated ester with complete selectivity. Sharpless
asymmetric dihydroxylation!3 of the o,B-unsaturated ester afforded the desired diol with excellent
diastereoselectivity (>95:5) and yield (80% from 9). Hydrolysis of the ethyl ester (LiOH, MeOH-H20) gave
the requisite carboxylic acid which was coupled (EDC/HOBt) with BnO-Gly-NH2¢TsOH (9) or BnO-Phe-
NH,*TsOH (12). Hydrogenolysis of the benzyl protecting groups afforded mimics § and 6 in good yield
(84% and 84% from 13).
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Scheme 2. Synthesis of SLe* mimcs § - 6.

Compounds 2 - 6 were fully characterized!4 and the ICsq values were determined3¢; SLe* (0.5 mmotl), 2
(70% inhibition at 3 mM), 3 (73% inhibition at 3 mM), 4 (0.1 mM), § (0.16 mM), 6 (inactive). Mimic 5
shows activity 3-fold better than SLe* for E-selectin. Introduction of the hydrophobic phenylalanine residue
(e.g. 6) resulted in complete loss of activity. Mimic 4 is 5-fold more active than SLe in spite of the fact that no
hydroxyl groups are present to mimic the D-galactose. Mimics 2 and 3 show only modest inhibitory activity.
Interestingly, mimic 5 does not inhibit P- and L-selectin at 3 mM, while 0% and 50% inhibition respectively
were observed with 3 mM SLeX. Current research in our laboratory is focused on the design and synthesis of

SLe* mimetics which show greater potency and increased selectivity for individual selectins.
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Data for 2: lH NMR (D20, 400 MHz) 6 4.33 (m, 1 H), 3.68-4.0 (m, 6 H), 3.64 (t, J = 3.1 Hz, |
H), 3.50-3.60 (m, 1 H), 2.81 (dd, J = 10.0, 14.7 Hz, 1 H), 2.57 (dd, J = 4.4, 14.7 Hz, 1 H);
HRMS (FAB) calcd for CjgH130gN (M + H) 280.1032, fouund 280.1034. Data for 3: |H NMR
(D20, 400 MHz) 6 7.11 (d, J = 8.4 Hz, 2 H), 6.82 (d, J = 8.1 Hz, 2 H), 4.53 (dd, J = 5.2, 8.4 Hz,
1 H), 4.21 (dd, J = 6.8, 6.8 Hz, 1 H), 3.58-3.79 (m, 5 H), 3.44-3.47 (m, 1 H), 3.12 (dd, J = 4.8,
13.9 Hz, 1 H), 2.87 (dd, J = 8.4, 14.0 Hz, 1 H), 2.70 (dd, /=9.2, 15.2 Hz, 1 H), 2.44 (dd, J =
5.7, 15.2 Hz, 1 H); MS caled for C17H2209N (M - H) 384, found 384. Data for 4: 'H NMR (D20,
400 MHz) 6 4.37-4.42 (m, 1 H), 4.32 (ddd, J = 1.8, 5.0, 5.0 Hz, 1 H), 3.87 (t, /= 2.9 Hz, 1 H),
3.79 (dd, J = 3.3, 9.0 Hz, 1 H), 3.71-3.77 (m, 2 H), 3.67 (dd, /= 9.2, 9.2 Hz, 1 H), 3.53-3.60
(m, 1 H), 2.80 (dd, J = 10.8, 14.8 Hz, 1 H), 2.55 (dd, J= 5.1, 149 Hz, 1 H), 2.46 (dd, J= 7.0,
7.0 Hz, 2 H), 2.11-2.20 (m, 1 H), 1.90-2.02 (m, 1 H); HRMS calcd for C13H22010N (M + H)
352.1244, found 352.1238. Data for 5: 'H NMR (D0, 400 MHz) 8 4.16 (d, / = 2.6 Hz, 1 H),
4.06-4.15 (m, 2 H), 4.04 (d, /= 17.8 Hz, 1 H), 3.94 (d, J = 179 Hz, 1 H), 3.90 (dd, J = 2.9, 1.7
Hz, 1 H), 3.86 (dd, J = 12.2, 1.9 Hz, 1 H), 3.80 (dd, / = 9.3, 3.2 Hz, 1 H), 3.71 (dd, J = 12.1,
6.3 Hz, 1 H), 3.64 (t, J = 9.4 Hz, 1 H), 3.53 (ddd, J = 9.4, 6.0, 1.6 Hz, | H), 2.08 (m, 1 H), 1.70
(ddd, J = 14.2, 10.4, 3.1 Hz, 1 H); Electrospray Ionisation (ESI) MS calcd for C12Hy 1 NO o (M)
339, found (pos.: M+H) 340, (neg.: [M-H]") 338. Data for 6: |H NMR (D;0, 500 MHz) 3 7.19-
7.29 (m, 5 H), 4.54 (br s, 1 H), 4.00-4.03 (m, 1 H), 4.01 (d, J=11.1 Hz, 1 H),3.93 (brd,J =
7.7 Hz, 1 H), 3.77 (m, 1 H), 3.76 (d, / = 11.3 Hz, 1 H), 3.68 (brd, /= 7.0 Hz, 1 H), 3.62, (dd, J
=11.7,59Hz, | H),3.54 (t, /=93 Hz, 1 H),3.40 (dd, J=7.3,70Hz, 1 H),3.13 (brd, J =
10.8 Hz, 1 H), 3.02 (br s, | H), 1.89 (brt,J =129 Hz, 1 H), 1.47 (brt,J = 11.5 Hz, 1 H);
HRMS (FAB) calcd for NaCj9H27NO 9 (M+Na) 452.1533, found 452.1545.
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